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Abstract

This paper proposes a new version of the Lempel–Ziv complexity as a bearing fault (single point) severity measure based

on the continuous wavelet transform (CWT) results, and attempts to address the issues present in the current version of the

Lempel–Ziv complexity measure. To establish the relationship between the Lempel–Ziv complexity and bearing fault

severity, an analytical model for a single-point defective bearing is adopted and the factors contributing to the complexity

value are explained. To avoid the ambiguity between fault and noise, the Lempel–Ziv complexity is jointly applied with the

CWT. The CWT is used to identify the best scale where the fault resides and eliminate the interferences of noise and

irrelevant signal components as much as possible. Then, the Lempel–Ziv complexity values are calculated for both the

envelope and high-frequency carrier signal obtained from wavelet coefficients at the best scale level. As the noise and other

un-related signal components have been largely removed, the Lempel–Ziv complexity value will be mostly contributed by

the bearing system and hence can be reliably used as a bearing fault measure. The applications to the bearing inner- and

outer-race fault signals have demonstrated that the revised Lempel–Ziv complexity can effectively measure the severity of

both inner- and outer-race faults. Since the complexity values are not dependent on the magnitude of the measured signal,

the proposed method is less sensitive to the data sets measured under different data acquisition conditions. In addition, as

the normalized complexity values are bounded between zero and one, it is convenient to observe the fault growing trend by

examining the Lempel–Ziv complexity.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A mechanical fault signal contains information not only about the machine health condition but also the
severity of fault. Proper maintenance decision can be made only when fault severity is accurately assessed. The
most commonly used measure of fault severity is the energy value in frequency or time–frequency domain.
Covacece and Intronini illustrated fault developments of ball bearing of helicopter gearbox using auto- and
cross-power spectrum [1]. Two indices, auto- and cross-power spectrum, increase their magnitudes as the fault
develops. In the work by Loutridis [2], energy was successfully applied to the fault feature (intrinsic mode
function, IMF) obtained from the empirical mode decomposition (EMD) method. Dalpiaz et al. [3] compared
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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the cepstrum and spectral correlation density (SCD) methods to reveal the sensitivity of two indices to fault
development. According to the work by Dalpiaz et al. [3], the cepstrum is insensitive to the crack evolution of
a gear. On the other hand, SCD shows an increasing trend as the gear crack grows.

Yu et al. [4] adopted the EMD energy entropy for extracting bearing fault feature from a noisy signal
mixture and the artificial neural network (ANN) for identifying the operating state of a roller bearing. They
demonstrated the superior performance of the proposed method in both extracting fault feature and
identifying bearing state by comparison with wavelet packet analysis.

Baydar and Ball [5] applied a time–frequency analysis method, smoothed pseudo-Wigner-Ville distribution
(SPWVD), to evaluate gear failures. Two symptoms were reported for faulty state. First, the energy
concentration appears around angular position corresponding to the fault. Second, frequency interference
increases between the fundamental and higher harmonics. As a fault develops, these two phenomena appear
more clearly. Boulahbal et al. [6] applied continuous wavelet transform (CWT) to the synchronous time
average (STA) signal of gear crack and chip to obtain the amplitude and phase plots. The result indicated that
energy concentration happened at the gear meshing frequency in the amplitude plot and phase changes
drastically around the fault location.

Baydar and Ball [7] adopted both amplitude and phase plots of CWT to analyze the faulty gear states. The
finding is similar to that of their previous work using SPWVD, i.e., the same two symptoms appear as fault
develops. In the work by Loutridis [8], a local energy density was calculated in the time-scale domain to
evaluate the relationship between energy level and gear fault development. The energy is obtained from the
wavelet coefficients at a specific time instant corresponding to the largest energy value over scales. A polar
wavelet amplitude map was applied to the STA signal of gear faults to display the fault severity and the
circumferential location around the rotating axis [9]. In their cases, energy concentration appeared and
became stronger as fault develops.

Time-domain analysis techniques were also applied for bearing fault diagnosis [10–12], which included root
mean squared (rms) value, kurtosis value and crest factor. Shao and Nezu [10] investigated the relationships
among fault size (or severity), the kurtosis value and the learning ratio of adaptive noise cancellation for faulty
bearing signals. Williams et al. [11] used multiple sensors to monitor bearing condition in the run-to-failure
test. They represented fault growth in terms of time-domain indices such as rms value, kurtosis and crest factor
calculated from the data collected by multiple sensors. The time-domain result was also compared with that
obtained using a frequency-domain technique, an envelope analysis. Recently, Al-Ghamd and Mba [12]
applied acoustic emission (AE) technique to identify defect presence and size on a radially loaded bearing.
They compared the AE and vibration results in terms of rms value, kurtosis and maximum amplitude of
measured signal. The authors also revealed the relationship between the AE burst duration and fault severity
(defect length).

Rubini and Meneghetti [13] compared the envelope spectrum method and the averaged wavelet amplitude
spectrum approach in evaluating ball bearing’s inner- and outer-race faults. Both methods were able to reveal
the difference in spectral magnitude as the fault develops. According to their work, the inner race and outer
race showed opposite trends in spectral magnitude as fault size increases.

Many fault evaluation methods reviewed above rely on the comparison of two different data sets related to
normal and faulty conditions or less severe and more severe conditions. There are three major difficulties in
the implementation of such methods:
(a)
 A fault of the same severity may display quite different signal strengths or magnitudes under different
operating conditions or for bearings of different sizes. In particular, when non-relative measures or un-
bounded (including single-end bounded) relative measures (such as kurtosis) are used, it will be difficult to
specify an upper bound that would indicate a conclusive need for bearing replacement. Therefore, the
signal may not be directly used for assessing fault severity. It should be noted that here the signal strengths
do not necessarily mean the amplitudes directly obtained from the FFT.
(b)
 Different gain settings used during data acquisition lead to very different signal magnitudes and hence the
use of signal ‘‘strength’’ in fault assessment without knowing the gain values may yield misleading results.
We wish to point out that if the difference in gain setting is known, this may not cause a major problem.
However, if the data sets were acquired by different people during different time periods and the gain
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differences were not be well documented, it would be difficult for other users of these data sets to come up
with reliable fault detection decisions.
(c)
 The data sets may not be available especially for new machines and new working conditions. Therefore,
the comparison based methods cannot be applied under such circumstances. Even if the data can be
collected, it would be very time-consuming to collect, store, manage, and retrieve them for on-line
applications.
It is therefore highly desirable to develop a severity measure that is independent of working conditions/gain
settings and does not require comparison between data sets. For this reason, Yan and Gao [14] proposed to
evaluate fault deterioration using the Lempel–Ziv complexity. A normalized Lempel–Ziv complexity yields a
non-dimensional value between zero and one [0, 1], close to zero for a pure sinusoidal signal and one for a
white Gaussian noise. Yan and Gao [14] demonstrated the possibility of using the complexity as a fault
severity measure and further indicated that the fault size as a severity measure is proportional to the
nonlinearity of the signal: the Lempel–Ziv complexity value increases as the size of the outer race bearing fault
grows. Their results also indicate that the increase of bearing speed tends to increase the complexity value and
the bearing load has no appreciable effect on the complexity. With the Lempel–Ziv complexity-based fault
evaluation measure, it would be possible to assess fault severity without comparing with reference data.
However, several important issues are yet to be addressed, i.e.,
(a)
 There is no clear distinction between a mechanical fault and noise. A relatively high complexity could
signify either the existence of a bearing fault or the presence of heavy noise. A signal produced by a
mechanical fault has non-dimensional complexity close to 1.0 as the fault develops whereas the pure noise
also has the same level of complexity.
(b)
 The previous complexity-based method yields quite different complexity levels for different data
measurements of the same bearing. Therefore, many data sets are required to calculate the average of the
complexity values of the data sets. The average complexity value is then considered a reliable indication of
the fault severity. This could cause delay in maintenance decision and could become an obstacle for on-line
applications.
(c)
 A theoretical explanation based on the cause and mechanism of bearing faults is required as for why the
complexity value can be used for measuring fault severity. A connection between the complexity measure
and fault severity can be established only when this is done.
In view of the above, a new version of the Lempel–Ziv complexity is developed for bearing fault severity
assessment based on the continuous wavelet transform (CWT). As the Lempel–Ziv complexity is bounded
between 0 and 1, it will provide a specific limit such that a complexity value close to such a limit would clearly
signal the need for replacement. Nevertheless, it should be noted that the initial complexity value of a new
bearing is needed in order to interpret the complexity value and its trend. The rest of the paper is organized as
follows. Section 2 presents an overview of the analytical signal model for a single-point defective bearing.
Section 3 describes the Lempel–Ziv complexity as a severity measure of bearing outer- and inner-race faults.
The proposed algorithm based on the Lempel–Ziv complexity and CWT is detailed in Section 4. The
application results of the proposed method to bearing outer- and inner-race fault signals are illustrated in
Section 5. The conclusions of this work are given in Section 6.
2. A model for a single-point defective bearing

For a single-point defect of a rolling element bearing, a signal model consists of several simplified terms
[15,16] as given by

xðtÞ ¼ xf ðtÞxlðtÞxbðtÞ þ nðtÞ, (1)

where x(t) is a measured vibration signal, xf(t) the impulse series produced by the fault, xl(t) the modulation
effect caused by the non-uniform load distribution, xb(t) the bearing-induced vibration including decay, and
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n(t) the mixture of unwanted signal components yielded by other parts of the machine and by noise. Each
vibration term can be modeled as a sinusoidal function as described in the following subsections.

2.1. Impulses generated by fault

For a constant rotating speed, the impulses generated by a single-point defect is simulated in time and
frequency domains with frequency ff and period Tf ¼ 1/ff as follows [15]:

xf ðtÞ ¼ df

X1
k¼�1

dðt� kTf Þ, (2a)

where df is the amplitude, d( � ) the unit impulse function. These repetitive impulses may be approximated by a
Fourier series, a sinusoidal function with frequency ff and its harmonics, as follows [17,18]

xf ðtÞ � Af

XN1

i¼1

cosð2pif f tþ fi
f Þ, (2b)

where ff
i is the phase of ith harmonic, Af the amplitude, and N1 the number of harmonics induced by impulse

series. This approximation is also adopted in Ref. [16].

2.2. Non-uniform load distribution

The following Stribeck equation explains the vibration caused by non-uniform load distribution around the
rolling element bearing [19]

xlðyÞ ¼ Pmax 1�
1

2�
ð1� cos yÞ

� �m

, (2c)

where Pmax is the maximum contact pressure at a circumferential angle y around shaft as shown in Fig. 1, e is
the load distribution factor, and m ¼ 1.5 for ball bearings and m ¼ 10/9 for other rolling element bearings.
Fig. 1. Load distribution in a bearing under radial load.
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The terms Pmax, ymax and e are dependent on the bearing clearance and the applied load. For bearing with
positive clearance, eo0.5 and ymaxop/2 [15]. In general, the inner race of the bearing is attached to a shaft
rotating at a constant frequency fs. Therefore, Eq. (2c) can be written in terms of time and shaft rotational
frequency by using y(t) ¼ 2pfst, i.e.,

xlðtÞ ¼
Pmax 1�

1

2�
ð1� cos yðtÞÞ

� �m

; for jyðtÞj ¼ j2pf stjoymax

0; elsewhere:

8><
>: (3)

2.3. Bearing-induced vibration

The high-frequency resonance vibration with decay can be modeled as a superposition of all vibration
modes [16]:

xbðtÞ ¼
XN2

j¼1

A
j
be
�aj

b
t cosð2pf

j
btþ fj

bÞ, (4)

where Ab
j, fb

j, fb
j, and ab

j are the amplitude, resonance frequency, phase, and damping factor of exponential
decay of jth vibration mode of the bearing, respectively, and N2 is modal order of bearing vibration.

3. Complexity as a measure of fault severity—the rationale

The complexity of a signal increases when more frequency components exist. For mechanical parts such as
gears and bearings, contact pressure between two mating parts changes when a fault exists. The contact
pressure variation results in amplitude and frequency modulations and hence more frequency peaks will
appear in the frequency domain with their harmonics [20]. Therefore, the fault progress leads to complexity
(randomness) changes because a larger fault intensifies variation of the contact pressure between two mating
parts.

The signal models of different vibration sources described in the previous section are adopted to evaluate
the complexities of inner- and outer-race fault signals. This study focuses on a bearing with a fixed outer race.
In this case, the rotating speed of the inner race is the same as that of the shaft. It is further assumed: (a) the
initial phase angles are zero, and (b) the modulation frequencies caused by a non-uniform load and the fault
frequencies of impulses are lower than the resonance frequencies of bearing, i.e.,

f
j
bbf f 4f s ðj ¼ 1; 2; . . . ;N2Þ, (5)

where fb
j, ff, and fs are the resonance frequency of the bearing, the frequency of the impulses generated by the

fault, and the shaft rotating frequency, respectively.

3.1. Outer-race fault

For the outer-race fault, the non-uniform load distribution does not have a strong effect on the outer-race
fault signal since the relative location of fault is not affected by the non-uniform load distribution. Therefore,
the non-uniform load term in Eq. (1) is negligible, i.e., xl(t)E1. Then, the signal model of outer-race fault is

xORðtÞ ¼ xf ðtÞxbðtÞ þ nðtÞ ¼ Af

XN1

i¼1

cosð2pif f tþ fi
f Þ
XN2

j¼1

A
j
be
�aj

b
t cosð2pf

j
btþ fj

bÞ þ nðtÞ. (6)

Based on the assumptions mentioned above, Eq. (6) can be written as

xORðtÞ ¼
XN1

i¼1

XN2

j¼1

Af A
j
be
�aj

b
t cosð2pif f tÞ cosð2pf

j
btÞ þ nðtÞ ¼

XN1

i¼1

XN2

j¼1

Af A
j
be
�aj

b
t 1

2
ðX 1 þ X 2Þ þ nðtÞ, (7)
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where

X 1 ¼ cos½2pðf j
b þ if f Þt� ¼ cos 2pf

j
b 1þ

if f

f
j
b

 !
t

" #

X 2 ¼ cos 2pðf j
b � if f Þt

h i
¼ cos 2pf

j
b 1�

if f

f
j
b

 !
t

" #
.

It should be noted that the two terms, X1 and X2, are expressed with the frequency modulation effect.
According to Howard [21], there are three dominant factors in impact action, i.e., bearing geometry,

rotational speed, and fault size. As the effects of the geometry and the rotational speed are constant for the
same bearing under stationary operating conditions, the fault size is the most important factor for the impact
action. Consider each term in Eq. (8). As fault size increases, the impulse associated with xf(t) gets dull since
the edges of the fault are flattened by repeated impacts [13]. The dull edges can no longer produce sharp
impulses and the strength of sharp impulses decreases as the fault grows. Such a phenomenon has been
confirmed by the shrinking peak magnitudes in the frequency spectrum as the inner race fault expands [13].
Therefore, the contribution of term xf(t) in Eq. (8) diminishes as the fault size increases.

The resonance frequency is constant for the same bearing since it is the system’s unique characteristic.
Therefore, the bearing resonance vibration term, xb(t), is considered to have less contribution in Eq. (8) as
fault size increases.

Based on the above, complexity of the outer-race fault is explained as follows. Consider one of rolling elements
and the bearing outer race. For a healthy bearing, the contact pressure between the ball and outer race does not
change much with respect to the angular position of the ball. However, for a faulty bearing, the contact pressure
increases when the ball hits the fault on the surface of the outer race as the actual contact area (the nominal contact
area minus the fault size) becomes smaller because of the fault. Hence, the contact pressure becomes variable when
a fault exists on the outer race. The fluctuating contact pressure results in frequency variation that leads to the
frequency modulation effect [20] as shown in Eq. (7). As the size of fault on the outer race increases, fluctuation of
the contact pressure intensifies, which reinforces the frequency modulation effect. The stronger frequency
modulation effect is evidenced by the increased number of frequency peaks in the frequency domain such as
harmonics. The larger number of frequency peaks renders higher complexity. Therefore, one can expect that, for
the outer-race single-point defect, the complexity will increase as the defect develops.

3.2. Inner-race fault

The radial load applied to the rotating shaft causes non-uniform load distribution around the inner race of
the bearing as illustrated in Fig. 1. The non-uniform load distribution causes low-frequency amplitude
modulation with a frequency of fs as shown in Eq. (3). For simplicity, consider a bearing with e ¼ 0.5 and
ymax ¼ p/2. The non-uniform load distribution term is accordingly

xlðtÞ ¼ lim
�!0:5

Pmax 1�
1

2�
ð1� cosð2pf stÞÞ

� �m

¼ Pmax cosð2pf stÞ
� �m

, (8)

where m ( ¼ 1.5, if a ball bearing is considered) is negligible since it does not have any effect on the frequency
component of xl(t). Eq. (8) can be rewritten as [16,18]

xlðtÞ �
XN3

k¼1

Ak
l cosð2pkf stþ fk

l Þ, (9)

where Al
k, fl

k, and N3 stand for the amplitude, phase of kth harmonic and the number of harmonics,
respectively. Then, the signal model for an inner-race fault is

xIRðtÞ ¼ xf ðtÞxbðtÞxlðtÞ þ nðtÞ

¼ Af

XN1

i¼1

cosð2pif f tþ fi
f Þ
XN2

j¼1

A
j
be
�aj

b
t cosð2pf

j
btþ fj

bÞ
XN3

k¼1

Ak
l cosð2pkf stþ fk

l Þ þ nðtÞ. (10)
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The above equation can be rewritten as

xIRðtÞ ¼
XN1

i¼1

XN2

j¼1

XN3

k¼1

Af Ak
l A

j
be
�aj

b
t cosð2pif f tÞ cosð2pf

j
btÞ cosð2pkf stÞ þ nðtÞ

¼
XN1

i¼1

XN2

j¼1

XN3

k¼1

Af Ak
l A

j
be
�aj

b
t 1

4
ðX 3 þ X 4 þ X 5 þ X 6Þ þ nðtÞ, (11)

where

X 3 ¼ cos½2pðf j
b þ if f þ kf sÞt�

X 4 ¼ cos½2pðf j
b � if f � kf sÞt�

X 5 ¼ cos½2pðf j
b � if f þ kf sÞt�

X 6 ¼ cos½2pðf j
b þ if f � kf sÞt�.

The inner-race fault signal creates three major frequency components as shown in Eq. (11).
For an inner-race fault signal, a non-uniform load distribution plays an important role in the vibration

signal. The vibration term corresponding to the non-uniform load distribution, xl(t), creates low-frequency
amplitude modulation. The amplitude of this term is dependent on the maximum contact pressure Pmax. For a
ball bearing, the surfaces of a ball and the inner race contact at a single point, which is called point contact.
The contact point expands to an ellipse when the load is applied [19,22]. The maximum contact pressure is
located at the center of the ellipse and its magnitude is [22]

Pmax ¼ 1:5
F

A
, (12)

where F is the force by which the components (ball and inner race) are pressed against each other and A is the
actual contact area between the two components (the nominal contact area minus the fault size). If we
approximate the defect area (the cavity caused by a fault) using a circle with radius r, the area corresponding
to the fault would swell in proportion to n2r2, as the fault size (diameter) increases to nr(n41). Therefore, the
actual area of contact between the ball and the inner race decreases as the fault size grows. This leads to a
rapid increase of the maximum contact pressure as suggested by Eq. (12) and a stronger low-frequency
amplitude modulation effect. Hence, the non-uniform load distribution dominates among three vibration
sources for the inner-race fault signal as expresses in Eq. (12). This dominance indicates a low-frequency
pattern formation. As a strong pattern starts to form, the randomness decreases and the orderliness increases,
leading to a low complexity value [23]. Hence, the complexity values of the inner-race fault signals are expected
to decrease as the fault grows, which is opposite to the outer-race case.

3.3. Lempel– Ziv complexity

Lempel and Ziv introduced an easily calculable measure of complexity of finite sequences, which adopted
two basic processes: copy and insert [24]. Fig. 2 explains the procedure of calculating the Lempel–Ziv
complexity for a finite sequence of length N. Consider a string SN ¼ {s1s2ysN}. Assume that a string up to
sr(1oroN) of complexity cN(r) can be reconstructed by simply copying and inserting some of the existing
vocabulary of Sv,r�1 ¼ {s1s2ysv}(vor). To check the rest string SN�r ¼ {sr+1ysN} can be re-produced by the
same approach, Lempel and Ziv introduced the following steps:

Step 1: Take Qr+1 ¼ {sr+1} and ask if this term belongs to the vocabulary of Sv,r ¼ {Sv,r�1sr}. If so, string
Qr+1 ¼ {sr+1} is a simple repetition of an existing substring of Sv,r (i.e., a simple ‘‘copy’’ of existing vocabulary
can restore it), and hence the complexity remains unchanged or cN(r+1) ¼ cN(r).

Step 2: Read the next string and take Qr+2 ¼ {sr+1sr+2}. Check if Qr+2 ¼ {sr+1sr+2} belongs to
Sv,r+1 ¼ {Sv,r�1srsr+1} (obtained by augmenting Sv with sr+1).

Step 3: If the term Qr+2 does not belong to Sv,r+1, increase the complexity by one, i.e.,
cN(r+2) ¼ cN(r+1)+1, nullifyQr+2 ¼ { }, read the next string and take Qr+3 ¼ {sr+3}.
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Repeats the above procedure until SN ¼ {s1s2ysN} is completely covered. Then, the resulting cN(N) is the
complexity of a given string.

Considering an example of a finite string S ¼ {0001101001000101} of length N ¼ 16, the above procedure
can be illustrated as follows:

Initialization : i ¼ 0; Sv;0 ¼ fg; Q0 ¼ fg; cN ð0Þ ¼ 0.

i ¼ 1; Sv;1 ¼ f0g; Q1 ¼ f0g; Q1eSv;0! cN ð1Þ ¼ 1; Q1 ¼ fg.

i ¼ 2; Sv;2 ¼ f00g; Q2 ¼ f0g; Q2 2 Sv;1! cNð2Þ ¼ 1.

i ¼ 3; Sv;3 ¼ f000g; Q3 ¼ f00g; Q3 2 Sv;2! cNð3Þ ¼ 1.

i ¼ 4; Sv;4 ¼ f0001g; Q4 ¼ f001g; Q4eSv;3 ! cN ð4Þ ¼ 2; Q4 ¼ fg.

i ¼ 5; Sv;5 ¼ f00011g; Q5 ¼ f1g; Q5 2 Sv;4! cNð5Þ ¼ 2.

i ¼ 6; Sv;6 ¼ f000110g; Q6 ¼ f10g; Q6eSv;5 ! cN ð6Þ ¼ 3; Q6 ¼ fg.

i ¼ 7; Sv;7 ¼ f0001101g; Q7 ¼ f1g; Q7 2 Sv;6! cNð7Þ ¼ 3.

i ¼ 8; Sv;8 ¼ f00011010g; Q8 ¼ f10g; Q8 2 Sv;7! cNð8Þ ¼ 3.

i ¼ 9; Sv;9 ¼ f000110100g; Q9 ¼ f100g; Q9eSv;8 ! cN ð9Þ ¼ 4; Q9 ¼ fg.

i ¼ 10; Sv;10 ¼ f0001101001g; Q10 ¼ f1g; Q10 2 Sv;9! cN ð10Þ ¼ 4.

i ¼ 11; Sv;11 ¼ f00011010010g; Q11 ¼ f10g; Q11 2 Sv;10! cN ð11Þ ¼ 4.

i ¼ 12; Sv;12 ¼ f000110100100g; Q12 ¼ f100g; Q12 2 Sv;11! cN ð12Þ ¼ 4.

i ¼ 13; Sv;13 ¼ f0001101001000g; Q13 ¼ f1000g; Q13eSv;12! cN ð13Þ ¼ 5; Q13 ¼ fg.
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i ¼ 14; Sv;14 ¼ f00011010010001g; Q14 ¼ f1g; Q14 2 Sv;13! cN ð14Þ ¼ 5.

i ¼ 15; Sv;15 ¼ f000110100100010g; Q15 ¼ f10g; Q15 2 Sv;14! cN ð15Þ ¼ 5.

i ¼ 16; Sv;16 ¼ f0001101001000101g; Q16 ¼ f101g; Q16 2 Sv;15! cN ð16Þ ¼ 5.

Now, the string shown in this example has a complexity of cN(16) ¼ 5.
The complexity obtained above is equal to the number of nullifications of Q. This is, to a certain extent,

affected by the length of the string, or the number of data samples N. To be robust, a complexity measure
should be independent of the number of data samples N. To find a robust complexity measure, Lempel and
Ziv [24] suggested a normalized Lempel–Ziv complexity measure after their names, cnN, defined by

0pcnN ¼
cN ðNÞ

cUL;N
p1, (13)

where

cUL;N ¼ lim
N!1

cNðNÞ ¼ lim
N!1

N

ð1� bÞlogk N
�

N

logk N
, (14)

where k is the size of the alphabets (or distinct elements) used in string S (for binary string, k ¼ 2), b-0 if
N-N [24,25].

However, in spite the effort of Lempel and Ziv, the ‘‘normalized’’ cnN is still affected by N when N is not
sufficiently large. This can be illustrated as follows. To examine the effect of the number of data samples on
the normalized complexity, a series of binary strings of different length is randomly generated based on the
Gaussian distribution. Their normalized complexities are calculated following the procedure shown in Fig. 2
and are plotted in Fig. 3. Since the data are random, the normalized complexity approaches 1.0 as the string
Fig. 3. The effect of data length on the normalized complexity for randomly generated data.
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length increases. The normalized complexity drops below 1.05 for NX3600, which is very close to the upper
bound, 1, of the ‘‘normalized’’ complexity. This procedure therefore could be used for selecting the number of
data samples to obtain a complexity index ranging roughly between [0, 1].

4. Calculating complexity of bearing fault signal

Yan and Gao [14] applied the Lempel–Ziv complexity to the cylindrical roller bearing and obtained
different complexity values for different fault sizes. According to their study, the normalized Lempel–Ziv
complexity approaches the upper limit, around 1.0, as a fault develops. They calculated the Lempel–Ziv
complexity from the measured acceleration signal. However, the measured signal is contaminated by noise.
This may increase the complexity value and it could lead to inaccurate diagnosis. As shown in Fig. 3, the pure
random noise has a normalized complexity value around 1.0. As illustrated later, the Lempel–Ziv complexity
of the signal of severe bearing faults is close to 1.0. Therefore, it is difficult to distinguish the sources (noise or
fault) of the complexity value. To alleviate this difficulty, the following procedure is proposed, which is further
detailed in Fig. 4:

Step 1: Apply continuous wavelet transform (CWT) to the measured signal.
Step 2: Obtain the energy and kurtosis in each scale level and find the best scale level by maximizing energy

and kurtosis distributions over scales used in step 1.
Step 3: Calculate normalized complexity of the wavelet coefficients at the best scale level.
The rationale of finding the best scale in step 2 is to extract the fault feature and exclude the interferences

from other frequency ranges. Then, the normalized complexity is calculated only based on the extracted fault
feature in step 3. In this way, much of the noise components have been eliminated and hence the ambiguity
between noise and severe faults can be cleared.

4.1. Continuous wavelet transform (CWT)

As shown in Fig. 4, the procedure starts with mapping the measured vibration signal into the scale-time
domain by CWT. The CWT is selected since it provides finer resolution in the scale-time plane than discrete
wavelet transform (DWT) does. The CWT is expressed as follows:

W ða; bÞ ¼

Z
xðtÞw�a;bðtÞdt ða ¼ amin; . . . ; amaxÞ, (15)
Fig. 4. Block diagram of Lempel–Ziv complexity as a measure of fault severity.
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where amin and amax are the smallest and the largest scale levels of interest, asterisk (*) indicates complex
conjugate and wa,b(t) is the daughter wavelet defined as

wa;bðtÞ ¼
1

jaj1=2
w

t� b

a

� �
, (16)

where a is dilation (scale) factor and b is translation factor in time. The factor |a|�1/2 is used to ensure energy
preservation [26]. In this study, the Morlet wavelet as shown below is used as a mother wavelet function
because of its similarity to the impulsive mechanical fault feature in shape [27,28]:

wðtÞ ¼ exp �
g2t2

2

� �
cosðo0tÞ, (17)

with g ¼ 1 and o0 ¼ 5. A measured signal normally contains many unnecessary signal components with
Gaussian behavior such as noise and interfering vibration generated by other machine elements. As mentioned
earlier, the normalized complexity of Gaussian noise approaches the upper limit of 1.0. Therefore, complexity
of the signal contaminated by noise cannot truly represent the severity of fault features. By applying wavelet
transform, one can select a scale level that reveals fault features with less interference of unnecessary signal
components. This ensures a relevant and reliable complexity value for the fault features under a noisy
environment.

4.2. Selection of the best scale

Since each scale level shows different frequency contents of the measured signal x(t), only the scale level
which best reflects the signal nature of the repetitive impulses should be selected. In this study, the energy and
kurtosis criteria are jointly used for scale selection. The reasons are: (a) the energy level is a measure of the
shape similarity of the measured signal and the daughter wavelet function, (b) unlike in the application for
basis or node selection in wavelet packet transform [29], the energy criterion cannot be used alone in this study
because a higher energy level is also associated with higher scale levels of CWT, and (c) kurtosis is a good
indicator of impulsiveness. Hence, the joint use of energy and kurtosis criteria would take into account of both
the signal-wavelet similarity and the fault signature impulsiveness. The joint use of the two would also
compensate for the incapability of the energy criterion in distinguishing whether the high energy level is due to
high signal-wavelet similarity or high scale level. The energy of the wavelet coefficients in each scale level can
be calculated by

Ea ¼
X

b

fW ða; bÞg2 a ¼ amin; . . . ; amax, (18)

where Ea represents the energy of the wavelet coefficients in scale a. Several peaks may appear in the plot of
Ea. Each scale associated with a peak energy value is considered as a candidate for the best scale. However, as
indicated earlier, energy alone cannot guarantee the best scale since the magnitude of the wavelet coefficients
increases as scale level increases for energy conservation [26]. The energy level becomes higher as scale level
increases, which may mislead the selection process of the best scale. This is further explained below using
energy distribution of daughter wavelets.

The Fourier transform of the Morlet daughter wavelets can be expressed as [30]:

wðtÞ ¼ e�t2=2e�jo0t; ŵðoÞ ¼ e�ðo�o0Þ
2=2; ŵa;bðoÞ ¼

ffiffiffi
a
p

e�ðo=a�o0Þ
2=2ejob, (19)

where ŵðoÞ and ŵa;bðoÞ are the Fourier transforms of the Morlet wavelet w(t), and its daughter wavelets
wa,b(t), respectively. Fig. 5 illustrates the normalized amplitude of the daughter wavelet functions at their
center frequencies (b ¼ 1 is used for illustration purpose and fc,a is center frequency at scale a). As shown in the
figure, the amplitude drastically increases with scale. Since the CWT is a series of band-pass filters with
increasing amplification rate, wavelet coefficients will have larger amplitude as scale increases, which leads to
higher energy levels.

To offset the above drawback of the energy criterion, the kurtosis distribution of wavelet coefficients is
examined. The measured faulty signal contains impulses produced by mechanical fault, and hence, the best
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Fig. 5. Normalized amplitude distribution of daughter wavelet functions.
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scale level should reveal the nature of these impulses. The energy level does not always reflect this nature since
it is calculated based on the amplitude of the wavelet coefficients instead of the impulsiveness of a signal.
Therefore, using energy value alone is not adequate to secure the best scale level that manifests the impulsive
character of the mechanical fault signature. On the other hand, the kurtosis value is sensitive to the outliers or
impulses generated by mechanical fault because it is proportional to the fourth-order higher moment defined
as [31]

kurtosis ¼
1

N

PN
i¼1ðxðiÞ � x̄Þ4

s4
, (20)

where x̄ and s are, respectively, the mean value and the standard deviation of the measured signal x, and N is
the number of data samples of the measured signal. A signal with a Gaussian distribution yields a kurtosis
value of 3.0 whereas the kurtosis of a signal with a sub-Gaussian distribution is less than 3.0. An impulsive
signal with super-Gaussian distribution has a kurtosis value greater than 3.0, a typical feature of a mechanical
fault. Therefore, considering both energy and kurtosis would provide more reliable scale selection process. The
best scale can then be found by

abest ¼ a
dEa

da
¼ 0 \maxðKaÞ \ Ka43:0

				

 �

a 2 amin; amax½ �, (21)

where Ka is kurtosis at scale a and abest is the selected best scale. The scale selected by Eq. (21) is considered to
contain the signal nature closest to the impulses produced by the mechanical fault. This selection method can
thus reduce the side effects of noise and un-related signals.

4.3. Calculation of Lempel– Ziv complexity

The Lempel–Ziv complexity values are calculated for the wavelet transformed signal and its envelope at the
best scale abest. As shown with the signal models in the previous section, the bearing fault signal consists of
higher-carrier and lower-modulating frequencies. Therefore, using the Lempel–Ziv complexity for both high-
and low-frequency signals is suitable for measuring bearing fault severity. The overall procedure is as follow:

Step 1: Obtain the high- and low-frequency signals from the wavelet coefficients at the best scale.
Step 2: Convert the high- and low-frequency signals into binary sequences.
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Step 3: Calculate the Lempel–Ziv complexity of the binary sequences using Eq. (13).
More details are given as follows. In step 1, the wavelet coefficients at the best scale abest are demodulated to

obtain the high-frequency carrier signal and low-frequency envelope signal. The Hilbert transform is applied
to the wavelet coefficients to find envelope signal of the wavelet coefficients, i.e., the low-frequency signal.

In the second step, both high- and low-frequency signals are converted into binary sequences. Any values
greater than or equal to the mean value of the given signal are replaced with one and others with zero.

In step 3, the normalized Lempel–Ziv complexity values for the high- and low-frequency signals are
calculated by

cnNH ¼
cN Nð Þ

cUL;N


 �
high freqeuncy

¼ LZCfW ðabest; bÞg,

cnNL ¼
cN Nð Þ

cUL;N


 �
low frequency

¼ LZCfEnvW ðabest; bÞg, (22)

where EnvW(abest,b) and LZC{ � } indicate the envelope signal of wavelet coefficients at the best scale abest and
the function for calculating Lempel–Ziv complexity, respectively. An indicator of fault severity is then
obtained based on the two normalized complexity values as follows:

cn ¼ wHcnNH þ wLcnNL, (23)

where wH and wL are the weights of high-frequency carrier signal and low-frequency envelope signal. Equal
weight is assigned to each dominant signal components. The outer-race fault signal contains two dominant
signal components, i.e., bearing resonance and impulses generated by fault as shown in Eq. (6) or (7). The two
signal components are corresponding to the high-frequency carrier signal and low-frequency envelope signal
respectively and each receives 50% of the weight. However, as suggested by Eq. (9) or (10), there exist three
dominant signal components in the inner-race signal contributed by bearing resonance, fault impulse and non-
uniform load, respectively. Since the resonance frequency is usually much higher than the frequencies of the
non-uniform load and fault impulses, it acts as the carrier frequency and the other two are classified as low
frequencies. In summary, the weights are allocated as follows:

wH ¼ 1=2

wL ¼ 1=2
for outer race

8<
:

wH ¼ 1=3

wL ¼ 2=3
for inner race

8<
: .

5. Applications to bearing fault data

The proposed method is applied to the bearing fault signal. Two different sources of bearing fault signals
are used to validate the proposed method: one from the Case Western Reserve University [32], and the other
from Rubini and Meneghetti [13].

5.1. Application 1

The proposed method is applied to bearing fault signals obtained from the Case Western Reserve University
[32]. Single-point defects of different sizes are created on the surfaces of inner and outer race of a deep groove
ball bearing (SKF6205-2RS JEM). The fault sizes are 0.178, 0.356, 0.533mm in diameter and 0.279mm in
depth. The sampling frequency is 12,000Hz and 12,000 data samples are used. The calculated Lempel–Ziv
complexity values are summarized in Fig. 6. The complexity of inner-race fault decreases as fault size increases
because of the modulation effect of the non-uniform load distribution. As a fault grows, the edge of the fault
cavity is smoothened out, leading to the decrease in the strength of sharp impulses. As such, the contribution
of the associated frequency component to the low frequency envelope signal diminishes. On the other hand,
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Fig. 6. Application 1. Lempel–Ziv complexity vs. fault size: (a) inner-race fault and (b) outer-race fault (note: 1797 rev/min,

1772 rev/min, 1750 rev/min, 1730 rev/min).
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the actual contact area is reduced due to the growing fault area, which in turn strengthens the non-uniform
load distribution effect. Because of the above, the vibration caused by the non-uniform load distribution is
becoming a dominant contributor to the low-frequency envelope signal. The diminished contribution of the
fault impulse and the increased effect of the non-uniform load distribution lead to the lower complexity which
means more order or less randomness [23,33,34]. The complexity of outer-race fault, on the other hand, shows
an increasing trend. This opposite trend is also validated by the work of Rubini and Meneghetti [13]. The
outer-race fault of 0.356mm diameter is not considered, as the data is not available. Fig. 6 clearly indicates
that the Lempel–Ziv complexity is proportional (for outer-race fault) or inversely proportional (for inner-race
fault) to fault size (severity) for all rotational speeds. The variances between different operating speeds are
relatively small.

A closer look at the plots in Fig. 6 indicates that the complexity value is somewhat affected by shaft rotating
speed. This is in agreement with the observation of Yan and Gao [14]. To further enhance the proposed
method, the speed factor may be incorporated in future.

5.2. Application 2

To further evaluate the performance, the proposed method is applied to bearing fault signals from Rubini
and Meneghetti [13]. The experimental data of three different fault sizes (small, medium, and large) are
acquired for both inner and outer races of a double-row self-aligning ball bearing with 12 rolling elements per
row (FAG 1204). The radial load on the bearing is set at 500N and the shaft rotation speed is 1602 rev/min.
The data are obtained at a sampling frequency of 20,000Hz and 20,000 samples are used. The calculated
Lempel–Ziv complexity values are summarized in Table 1. As shown in the table, the complexity of inner-race
fault decreases and the complexity of outer-race fault increases as the faults develop. For the large outer-race
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Table 1

Lempel–Ziv complexity vs. fault size (Application 2)

Small Medium Large

Inner race fault 0.219 0.169 0.147

Outer race fault 0.190 0.243 N/A
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fault, the size of the fault is roughly 4mm� 4mm in square shape, which is too large to be considered as a
single-point defect compared to the ball size of 6.35mm in diameter. In this case, the complexity value is not
calculated since the best scale from CWT cannot be selected due to the low kurtosis value (below 3). The
reason is that as a single-point defect becomes a distributed fault, the strength of impulsiveness weakens,
leading to low kurtosis. Therefore, the selection criterion in Eq. (22) can no longer find a best scale that
satisfies all conditions simultaneously. This finding could be used to predict the transition from single-point
fault to distributed fault.

The above two applications based on data from different sources have shown that the proposed method is
quite robust in assessing fault severity of single-point defects on the inner and outer races of a bearing. Though
this method may not be used to assess the severity of distributed faults, it could reveal the transition between
single-point and distributed faults. In addition, unlike the non-relative or un-bounded (including single-end
bounded) measures whose values may not reveal a conclusive need for bearing replacement, the Lempel–Ziv
complexity bounded between zero and one provides a specific limit such that a complexity value close to this
limit would clearly signal the need for replacement. It is worth to point out that, for a healthy bearing, the
‘‘best’’ wavelet scale does not exist and hence the complexity value cannot be calculated. The healthy bearings
are simply screened out at this stage without going to the next stage. This is an advantage of the proposed
method due to the reduced computational effort.

6. Conclusion

Assessing fault severity is one of the main challenges in fault diagnosis. So far, the severity has often been
evaluated based on comparison methods based on no-relative or un-bounded (including single-end bounded)
measures. Though such measures may be useful, it is not an easy task to specify a safeguard limit. In addition,
the magnitudes of non-relative measures of the signals are dependent on many factors such as bearing size,
load, working conditions, as well as the gain used in data acquisition. Hence, the same signal magnitude does
not necessarily indicate the same fault severity and such methods may not provide a reliable indication of fault
severity. To reliably evaluate fault severity, many different reference data would have to be collected for
different conditions if the comparison based methods are used. However, such data are often unavailable
particularly for new working conditions. Even if the data can be collected, it would be very tedious and time-
consuming to collect, store, maintain, and retrieve them especially for variable and less predictable working
conditions. To avoid this difficulty, the Lempel–Ziv complexity, a non-dimensional index ranging roughly
between 0 and 1, is adopted as a fault severity measure. As shown in this work, the value of such a normalized
non-dimensional measure is mainly affected by fault size (severity) and should be less susceptible to other
factors. As a result, the proposed severity measure can be used for ball bearings of different sizes under
different operation environments. The performance of the method has been evaluated using experimental data
from different sources. The results indicate that the fault severity can be assessed reasonably well by the
proposed method. In addition, it is important to point out that the Lempel–Ziv complexity is calculated based
on the best CWT scale level and hence the noise and many un-related signal components have been screened
out. This makes the diagnosis result more reliable.
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